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Abstract

The subject of this article is the frame problem, as conceived by
certain cognitive scientists and philosophers of mind. The challenge is
to explain the capacity of so-called informationally unencapsulated
cognitive processes to deal effectively with information from
potentially any cognitive domain without the burden of having to
explicitly sift the relevant from the irrelevant. The paper advocates a
global workspace architecture, with its ability to manage massively
parallel resources in the context of a serial thread of computation, as
an answer to this challenge. Analogical reasoning is given particular
attention, since it exemplifies informational unencapsulation in its
most extreme form. Because global workspace theory also purports to
account for the distinction between conscious and unconscious
information processing, the paper advances the tentative conclusion
that consciousness goes hand-in-hand with a solution to the frame
problem in the biological brain.
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1. Introduction
The frame problem was originally couched as a difficulty within classical
Artificial Intelligence: How can we build a program capable of inferring the
effects of an action without reasoning explicitly about all its obvious non-
effects? But many philosophers saw the frame problem as symptomatic of a
wider difficulty, namely how to account for cognitive processes capable of
drawing on information from arbitrary domains of knowledge or expertise.
So-called “informationally unencapsulated” processes of this sort,
exemplified by analogical reasoning, are especially troublesome for theories
of mind that rely on some sort of modular organisation to render them
computationally feasible.

However, one thing is clear. If the frame problem is a genuine puzzle,
the human brain incorporates a solution to it. In global workspace theory,
we find clues to how this solution might work. Global workspace theory
posits a functional role for consciousness, which is to facilitate information
exchange among multiple, special-purpose, unconscious brain processes
(Baars, 1988). These compete for access to a global workspace, which
allows selected information to be broadcast back to the whole system. Such
an architecture accommodates high-speed, domain-specific processes (or
“modules”) while facilitating just the sort of crossing of domain boundaries
required to address the philosophers’ frame problem.

The paper is organised as follows. In Sections 2 and 3, the philosophers’
conception of the frame problem is presented. Section 4 challenges the
premise that informationally unencapsulated cognitive processes are, in
principle, computationally infeasible. In Section 5, global workspace theory
is outlined. The arguments in favour of the theory are reviewed, thalamo-
cortical interaction is proposed as a possible mechanism for realising a
global workspace in the biological brain, and the global workspace
architecture is commended as a model of combined serial and parallel
information flow capable of overcoming the frame problem.

Section 6 concerns analogical reasoning, the epitome of informational
unencapsulation, and demonstrates that the most successful of contemporary
computational models of analogical reasoning are strikingly compatible
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with global workspace theory. The concluding discussion addresses a
variety of topics including modularity, working memory, conscious
information processing, and the relationship between parallel and serial
computation in a generic account of cognitive function.

2. The Frame Problem
The frame problem, in its original form, was to address the following
question (McCarthy & Hayes, 1969). How is it possible to write a collection
of axioms in mathematical logic that captures the effects of actions, without
being obliged to include an overwhelming number of axioms that describe
the trivial non-effects of those actions? In everyday discourse, we can
describe the effect of, say, painting an object simply by detailing how its
colour changes. There is no need to state explicitly that the object’s shape
remains the same, that the neighbour’s cat remains asleep, that the Sun
continues to shine, and so on. This is all taken for granted by common
sense.

In mathematical logic, by contrast, nothing is taken for granted. Not
only is it necessary to make explicit the changes an action brings about, it’s
also necessary to make explicit the things that do not change, and for most
actions this will be a great deal. This was particularly troubling for AI
researchers in the 1970s and 1980s who wanted to write programs that
worked by carrying out inference with logical formulae. The burden of
having to supply a set of explicit formulae describing every non-effect of
every action seemed overwhelming, both representationally and
computationally.

In the intervening decades, the frame problem in this narrow guise has
receded. Researchers in logic-based AI – who have become something of a
minority anyway – more-or-less solved the problem in the 1990s using a
combination of judicious representation techniques and non-monotonic
forms of inference (Sandewall, 1994; Shanahan, 1997; Reiter, 2001).1 Yet
the frame problem lives on in the minds of cognitive scientists. This is

                                                
1 For an overview see (Shanahan, 2003).
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largely due to the wider interpretation given to it by certain philosophers of
mind, especially Fodor (1983; 1987; 2000).

The credit (or blame) for first bringing the frame problem to the
attention of philosophers of mind and cognitive scientists goes to Dennett,
who characterised it as the challenge of understanding how “a cognitive
creature … with many beliefs about the world” can update those beliefs
when it performs an action so that they remain “roughly faithful to the
world” (1978, p.125). In The Modularity of Mind, Fodor invited the reader
to consider a hypothetical robot, and poses a related question: “How … does
the machine’s program determine which beliefs the robot ought to re-
evaluate given that it has embarked upon some or other course of action?”
(Fodor, 1983, p.114).

Dennett (1984) highlights the issue with a memorable example. He asks
us to consider the challenge facing the designers of an imaginary robot
whose task is to retrieve an object resting on a wagon in a nearby room. But
the room also contains a bomb, which is timed to explode soon. The first
version of the robot successfully works out that it must pull the wagon out
of the room. Unfortunately, the bomb is on the wagon. And although the
robot knows the bomb is on the wagon, it fails to notice that pulling the
wagon out brings the bomb along too.

So the designers produce a second version of the robot. This model
works out all the consequences of its actions before doing anything. But the
new robot gets blown up too, because it spends too long in the room
working out what will happen when it moves the wagon.

It had just finished deducing that pulling the wagon out of the room
would not change to color of the room’s walls, and was embarking on
a proof of the further implication that pulling the wagon out would
cause its wheels to turn more revolutions than there were wheels on
the wagon – when the bomb exploded.2

So the robot builders come up with a third design. This robot is
programmed to tell the difference between relevant  and irrelevant
implications. When working out the consequences of its actions, it considers
                                                
2 Dennett (1984), p. 129.
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only the relevant ones. But to the surprise of its designers, this version of the
robot fares no better. Like its predecessor, it sits in the room “thinking”
rather than acting.

“Do something!” they yelled at it. “I am,” it retorted. “I’m busily
ignoring some thousands of implications I have determined to be
irrelevant. Just as soon as I find an irrelevant implication, I put it on
the list of those I must ignore, and …” the bomb went off.3

In Fodor’s words, this robot suffers from “Hamlet's problem: when to
stop thinking”, and the frame problem is “Hamlet's problem viewed from an
engineer’s perspective” (Fodor, 1987, p.140). Significantly, the problem of
“when to stop thinking” arises not only when anticipating the consequences
of an action. It is a difficulty that besets any informationally unencapsulated
inference process, that is to say any process for which no a priori limit
exists to the information that might be pertinent to it. Exemplary among
such processes is analogical reasoning, “which depends precisely upon the
transfer of information among cognitive domains previously assumed to be
irrelevant” (Fodor, 1983, p.105).

3. The Computational Theory of Mind
The concern of this paper is the frame problem in the wide sense intended
by Fodor.4 Is the frame problem, in this sense, a real problem, and if so,
how is it solved in the human brain? The first question to be addressed is the
following. Granted that certain mental processes, such as analogical
reasoning, are indeed informationally unencapsulated, why is this thought to
be such a serious problem?

The significance of the frame problem is inherited from the
Computational Theory of Mind (CTM). According to CTM, cognitive
processes are computations. Specifically, they are truth-preserving
                                                
3 Dennett (1984), p. 130.
4 Controversy over the use of the term “frame problem” has led to some acrimonious debate between
AI researchers and philosophers (Pylyshyn, 1987). The present paper takes the view that the
philosophers have pinpointed an interesting and well-defined question relating to informationally
unencapsulated cognitive processes, even if this issue bears only a slight resemblance to the original
AI researchers’ frame problem.
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computations over representations that have a combinatorial syntax. The
Computational Theory of Mind is stronger than the claim that the input-
output function of every human brain is equivalent to some Turing machine.
As Fodor puts it, CTM entails that “the mind is interestingly like a Turing
machine” (Fodor, 2000, p. 30).

The frame problem is viewed as a problem for CTM because
informationally unencapsulated processes are thought to be computationally
infeasible.5 Here’s Fodor again.

The totality of one’s epistemic commitments is vastly too large a
space to have to search if all one’s trying to do is figure out whether,
since there are clouds, it would be wise to carry an umbrella. Indeed,
the totality of one’s epistemic commitments is vastly too large a space
to have to search whatever it is that one is trying to figure out.6

This sort of view is pervasive, and by no means confined to Fodor. Here
is Carruthers on the same theme.

The computational processes that realize human cognition will need to
be tractable ones, of course; for they need to operate in real time with
limited computational resources … And any processor that had to
access the full set of the agent’s background beliefs (or even a
significant sub-set thereof) would be faced with an unmanageable
combinatorial explosion.7

Famously, such considerations lead Fodor to propose a distinction
between the mind’s peripheral processes, which are supposedly
informationally encapsulated and therefore computationally feasible, and its
central processes, which are informationally unencapsulated and therefore
computationally infeasible. The mind’s peripheral processes – which do
only “moderately” interesting things, like parsing and early vision – can be

                                                
5 The term computationally “infeasible” rather than “intractable” is used here because intractability
has a mathematically precise meaning in the context of computational complexity, which we will
come to shortly. Philosophers writing on the frame problem are typically informal in their use of such
terms.
6 Fodor (2000), p. 31.
7 Carruthers (2003), p. 505.
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understood as a system of modules, and are amenable to study by cognitive
scientists. On the other hand, the mind’s central processes – which do all the
really interesting and important things, like belief revision and analogical
reasoning – because they are computationally infeasible, are altogether
beyond understanding for contemporary cognitive science (Fodor, 1983;
2000).

… it probably isn’t true, at least in the general case, that cognitive
processes are computations. … [so] it’s a mystery, not just a problem,
what model of the mind cognitive science ought to try next.8

Fodor’s prognosis is dire. But his argument rests on several questionable
assumptions. The first is that the Computational Theory of Mind is the only
viable research methodology in cognitive science today, “the only game in
town” as he put it.9 This assumption has been vigorously challenged, and
just as robustly defended.10 But the target of the present paper is the
assumption that informationally unencapsulated processes are
computationally infeasible, a claim that can be detached from CTM. As
Haselager and van Rappard (1988) point out, if we accept the need to
account for the “systematicity” of thought (Fodor & Pylyshyn, 1988), then
the frame problem is equally an issue for a connectionist theory of mind.
The following section deals specifically with Fodor’s argument, so its
notion of a “cognitive process” is inherited from CTM. But the solution
ultimately offered here, based on global workspace architecture, admits a
wider variety of forms of computation.

4. Complexity and Informational Encapsulation
There is no doubt, of course, that some tasks are computationally
intractable, in a sense that has been made mathematically precise (Garey &
Johnson, 1979). To sharpen the discussion, it’s worth reviewing the basic
computer science. Consider a function F. Suppose it can be proved that an
                                                
8 Fodor (2000), p. 23.
9 Fodor (1975), p. 406.
10 Highlights of the debate include the connectionist attack by Smolensky (1988), the response from
Fodor & Pylyshyn (1988), and more recently the dynamical systems challenge (van Gelder, 1997).
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algorithm exists that, for any input string x of length n, can compute F(x) in
less than or equal to T(n) steps. So T sets an upper bound on how long the
computation will take, in the general case. The rate of growth of T  can
succinctly be characterised by the dominant term in T, dropping other terms
and coefficients. For example, if T(n) = 5n2 + 3n + 7, then the growth of T is
characterised by n2, and we say that the task of computing F  is O(n 2),
pronounced “order n2”. If a computational task is O(n), then it is easy, from
a computational point-of-view. If a task is O(n2), then it is not so easy. Even
so, any task that is O(nk) for some constant k is said to tractable. The class
of all such problems is denoted P.

Now, there exists an important class of problems for which the best
known algorithms are O(2n), even though polynomial-time algorithms exist
for verifying the correctness of a given solution to the problem. This class of
problems is denoted NP, and any task that falls into this class is said to be
computationally intractable. The best known of these is the so-called SAT
problem, which is the task of showing that a given expression of
propositional logic (of a certain form) is satisfiable. A typical strategy for
proving that a task belongs to NP is to show that it can be reduced to the
SAT problem in polynomial time. Any such problem is said to be NP-
complete.

NP-complete problems, though hard from a computational point-of-
view, are not the hardest. Beyond NP, we have a class of problems for
which it can be proved that no algorithm exists at all that is guaranteed to
produce a solution. Such problems are said to be undecidable. Examples
include the Halting Problem for Turing machines and theorem proving in
first-order predicate calculus.

It is generally taken to be a bad thing if a computer programmer
becomes entangled with an NP-complete problem, and worse still if they
end up wrestling with an undecidable one. Despite this, computer scientists
(especially AI researchers) routinely confront both NP-complete and
undecidable problems. As far as intractability is concerned, if n  is
guaranteed to be small, an exponential algorithm is not so worrying.
Moreover, it should be remembered that these complexity results are worst-
case analyses. Individual instances of an NP-complete problem are
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frequently soluble in reasonable time, even for large n, especially if clever
heuristics are used. Additionally, various practical techniques, including
resource bounded computation (Russell & Wefald, 1991) and anytime
algorithms (Zilberstein & Russell, 1993), can be used to mitigate the effects
of an unfavourable complexity result in a working system.11

Now let’s return to the supposition that informationally unencapsulated
cognitive processes are computationally infeasible. Does this claim stand up
to proper scrutiny? In particular, are such processes intractable in the
theoretically precise sense? First, let’s reconsider the fact that, according to
the computational theory of mind, cognitive processes are “truth-preserving
computations over representations that have a combinatorial syntax”. In
other words, cognitive processes prove theorems in some formal logic.
Moreover, for CTM to be capable of explaining the systematicity of thought
(Fodor & Pylyshyn, 1988), the logic in question must be at least first
order.12 Since it is known that theorem proving is undecidable for first-order
predicate calculus, it’s natural to ask whether this is the reason
informationally unencapsulated cognitive processes are alleged to be
infeasible. But this cannot the basis of the allegation, because the same
observation applies to supposedly untroublesome informationally
encapsulated cognitive processes. If these also carry out first-order logical
inference, they too are undecidable, regardless of the problem size.

Therefore the real concern over computational feasibility is not an
accompaniment to the presumption that first-order logical inference is
taking place.13 The real worry, in the context of the frame problem, seems
to be that the set of sentences having a potential bearing on an
informationally unencapsulated cognitive process is simply “too big”. This
suggests that the issue isn’t really tractability, in the proper sense of the
term, for tractability is to do with the rate at which computation time grows

                                                
11 The inspiration behind these techniques is the concept of bounded rationality  introduced in
(Simon, 1957).
12 According to (Fodor & Pylyshyn, 1988), systematicity is a property of relational representations.
Therefore propositional calculus, though decidable, would be inadequate.
13 Exactly why supporters of CTM are not worried by this issue is hard to fathom. Perhaps they are
impressed by the armoury of techniques developed by AI researchers to contain the problem. If so,
they never seem to mention the fact.
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with the size of the problem. Rather, the difficulty seems to be the upper
bound on n, not the upper bound on T (n), where the n in question is the
number of potentially relevant background sentences.

But why should a large such n be a problem? Recall Fodor’s claim that
“the totality of one’s epistemic commitments is vastly too large a space to
have to search”. Perhaps the perceived difficulty with a large n  is the
supposed cost of carrying out an exhaustive search of n items of data. Yet
plenty of algorithms exist for search problems that have very favourable
computational properties. For example, the task of searching a balanced
ordered binary tree for a given item of data is O (log2 n). Other data
structures for search have even better complexity results. This is why
Internet search engines can find every website that mentions a given
combination of keywords in a fraction of a second, even though they have
access to several billion web pages.

Similarly, take Carruthers’ assertion that a process that has to “access
the full set of the agent’s background beliefs … would be faced with an
unmanageable combinatorial explosion”. It should be clear by now that the
truth of this claim depends entirely on the nature of the process in question.
As long as this is not spelled out, the purported infeasibility of
informationally encapsulated cognitive processes remains in question. If
isolating relevant information from a mass of background beliefs is a matter
of searching a very large data structure, then there is no combinatorial
problem.

To see how it might not be merely a matter of searching a large data
structure, let’s introduce a distinction between explicit belief that is “near
the surface” and easily accessible to cognition and the mass of implicit
potential belief buried deep in the logical consequences of the set of explicit
beliefs. Perhaps explicit beliefs can indeed be thought of as stored in a large
data structure, and as therefore amenable to efficient search. But it seems
reasonable to suppose there could be an implicit belief relevant to an
ongoing problem while none of the explicit beliefs entailing it had anything
about them to indicate this. How would could an informationally
unencapsulated process find this implicit belief without having to visit all
the logical consequences of every explicit belief?
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Of course, it would be ridiculous to suppose that just because someone
believed P they also believed all the logical consequences of P, and it’s
equally ridiculous to suppose human cognition will always successfully
exploit all the relevant implications of explicit belief (Cherniak, 1986).14

Human beings are fallible, and this is one among many reasons why. But
this observation is a red herring. The frame problem is an issue even
allowing for the limits of human cognition (Fodor, 2000, Ch. 2). The
question is how human beings ever manage to select relevant information
from a large mass of candidate beliefs in arbitrary domains and bring it to
bear on a novel problem. The issue of how far into the consequences of
explicit belief a cognitive process can feasibly penetrate is orthogonal. So it
cannot be a cornerstone of the computational infeasibility thesis.

Perhaps Fodor, Carruthers, and other like-minded cognitive scientists
have been led astray by Dennett’s caricature of a ploddingly stupid robot
trying not to get blown up. Recall that Dennett’s imaginary robot explicitly
considers each irrelevant implication of its actions before it decides to
ignore it. The robot’s supposed difficulty is that it doesn’t know how to stop
thinking. But the design of Dennett’s robot is absurd. It carries out a serial
computation that exhaustively works through a long list of alternatives one-
by-one before it terminates. In the following section, a rather different
computational model is brought to bear on the frame problem.

5. Global Workspace Theory
The discussion of the previous section suggests that a convincing case for
the computational infeasibility of informationally unencapsulated cognitive
processes has not been made. Proponents of the infeasibility thesis are
insufficiently rigorous in their treatment of algorithmic complexity and are
unsuccessful in demonstrating that computational problems follow from the
nature of the cognitive processes in question. So it is legitimate to regard the
existence of such processes as a problem rather than a mystery. Yet it is an
injustice to these authors to deny the intuitive force of their challenge. The
task remains to explain how an informationally unencapsulated process
                                                
14 See (Gabaix & Laibson, 2003) for a discussion of this issue in the context of economics.
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might be realised in a biological brain. Since the human brain plainly does
not use data structures like ordered binary trees, how does a cognitive
process like analogical reasoning manage to select among all the
information available to it?

However, as it stands this question is somewhat ill-posed. It betrays the
assumption that it is the responsibility of the cognitive process itself to make
the selection of relevant information. According to the proposal of the
present section, a better question would be the following. How is it that all
and only the relevant information is made available to a cognitive process
like analogical reasoning? The answer offered here relies on the idea of
distributing the responsibility for selecting relevant information among
multiple parallel processes. The proposed means for achieving this is a
global workspace architecture (Baars, 1988).

Figure 1: The Global Workspace Architecture

The essence of the global workspace architecture is a model of parallel
information flow. Multiple parallel specialist processes compete and co-
operate for access to a global workspace (Figure 1, left). A specialist
process can be responsible for some aspect of perception, long-term
planning, problem solving, language understanding, language production,
action selection, or indeed any posited cognitive process. If granted access
to the global workspace, the information a process has to offer is broadcast
back to the entire set of specialists (Figure 1, right). The means by which
access is granted to the global workspace corresponds to an attention
mechanism.

Parallel Unconscious
Specialist Processes

Global Workspace
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According to the global workspace hypothesis, the mammalian brain is
organised in this way, and using this architectural blueprint it is possible to
distinguish between conscious and unconscious information processing.
Unconscious information processing is carried out by the parallel specialist
processes. Only information that is broadcast via the global workspace is
consciously processed.

Possible neural mechanisms capable of supporting a global workspace
are the subject of ongoing research. A naïve interpretation of the
architectural proposal in Figure 1 suggests an analogy with the computer
scientist’s notion of data transmitted along a bus and stored in a buffer. But
this makes little sense at the neurological level.15 Rather, what is sought is a
mechanism by which the activity of small selected portions of cortex – those
that have gained access to the global workspace – can systematically
influence the activity of the rest of cortex.16 A likely means of achieving
this is through thalamo-cortical interaction (Llinás, et al., 1998; Edelman &
Tononi, 2000, pp. 148–149).17

The thalamo-cortical interaction hypothesis is consistent with the
recently reported discovery of a pan-cortical pattern of aperiodic alternation
between coherent EEG activity and decoherent EEG activity (Rodriguez, et
al., 1999; Freeman & Rogers, 2003).18 This phenomenon is suggestive of
repetitive switching between episodes of competition for access to the
global workspace (marked by decoherent electrical activity), and episodes
of passive “listening in” by the rest of cortex to the neural population thus
granted access (marked by coherent electrical activity). The frequency of
this oscillatory pattern (in the alpha range of 7-12 Hz) is compatible with

                                                
15 Although concepts inherited from computer science are not always applicable to the biological
brain, they remain valid building blocks from a purely engineering standpoint. To build a robot that
doesn’t suffer from the frame problem, the whole spectrum of implementation options for a global
workspace architecture remains open.
16 The distinction between global access and global broadcast breaks down at this level, and these
terms are used interchangeably. Dehaene, et al. (2003) use the evocative term “ignition” for the
sudden eruption of widespread brain activity that is the proposed signature of conscious information
flow.
17 Dehaene, et al . (2003) present computer model that implements a global neuronal workspace
through thalamo-cortical interaction, and use it to simulate the attentional blink.
18 See also the review by Varela, et al. (2001).
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widely accepted figures for the minimum time required for a stimulus to
become conscious (approximately 250 ms) (Libet, 1996).19

It would make sense, in terms of global workspace theory, if an episode
of decoherent activity came to an end when positive feedback enabled one
or more small neural sub-populations to emerge as dominant.20 Using lateral
inhibition to suppress other cortical regions, a dominant population could
start to drive the rest of cortex via the thalamus, allowing its message to be
heard by all. The result would be an episode of coherent activity. But this
would destabilise as soon as the influence of the driver population(s) started
to fade and the newly broadcast pattern of activation enabled previously
suppressed populations to compete for access again.

There is a growing body of other empirical evidence in support of global
workspace theory (Dehaene & Naccache, 2001; Baars, 2002). In particular,
the hypothesis that consciousness enables global activation has now been
supported in dozens of brain imaging studies. The typical experimental
paradigm is based on contrastive analysis (Baars, 1988), wherein closely
matched conscious and unconscious conditions are compared in waking
subjects, either by stimulus manipulation (binocular rivalry, masking,
attentional tasks, etc.) or by overpractice of automatic habits.

In all cases tested so far, the conscious condition recruits very
widespread cortical resources while the matched unconscious event
typically activates local regions only (Baars, 2002; 2003). For example, in
an fMRI study by Dehaene, et al. (2001) using visual backward masking,
unconscious words activated visual word areas only, while the identical
conscious words evoked widespread activation of parietal and prefrontal
cortex as well. Kreiman, et al. (2003) have shown that medial-temporal
areas are also activated by pictures, but only if they were conscious, using
implanted electrodes in epileptic patients. These regions are specialized for
memory and emotion.
                                                
19 The interpretation of Libet’s data is controversial (see the whole of Consciousness and Cognition
11(2)). Pockett (2002), for example, using Libet’s original data, revises the stimulus-to-awareness
time down to approximately 80 ms. But this is still compatible with the present interpretation of
Freeman’s results.
20 As well as allowing the rest of cortex to “listen in”, an episode of coherence might facilitate
temporal binding among multiple populations (Engel, et al., 1999).
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In a complementary experimental paradigm, brain response to
stimulation has been compared in conscious versus unconscious states.
Unconscious states studied include sleep, general anesthesia, epileptic loss
of consciousness and vegetative states. Sensory stimulation in all four
unconscious states evokes only local cortical responses, but not the global
recruitment characteristic of sensory input in conscious subjects (Baars, et
al., 2004). This general pattern of results has now been shown for vision,
hearing, pain perception, touch, and sensorimotor tasks. It appears that
conscious events recruit global activity in the cerebral cortex, as predicted
by the theory.

An intuitively pleasing consequence of the model of information flow
proposed in (Baars, 1988) is that the contents of the global workspace
unfolds in a serial manner, yet it is the product of massively parallel
processing. In accordance with subjective experience, a sequence of
moment-to-moment snapshots of the contents of the global workspace
would reveal a meaningful progression, and each state would typically be
related to its predecessor in a coherent way. Yet the state-to-state relation
itself is highly complex, and is certainly not obtainable by a single
computational step in a serial von Neumann architecture. Rather, it is the
outcome of a selection procedure that has at its disposal the results of
numerous separate computations, each of which might have something of
value to contribute to the ongoing procession of thoughts. To put it another
way, the global workspace has limited capacity, but it enjoys vast access to
the brain’s resources (Baars, 1997).

From an engineering standpoint, the global workspace architecture has a
pedigree dating back to the earliest days of artificial intelligence. Its origins
lie in Selfridge’s pandemonium architecture (1959), which inspired
Newell’s blackboard metaphor for problem solving (1962).

Metaphorically we can think of a set of workers, all looking at the
same blackboard: each is able to read everything that is on it, and
judge when he has something worthwhile to add to it.21

                                                
21 Newell (1962).
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Newell’s model was successfully applied to the problem of speech
recognition in the 1970s (Erman & Lesser, 1975), and this led to the
development of so-called blackboard architectures for AI systems in the
1980s (Hayes-Roth, 1985; Nii, 1986). These systems supplied the original
inspiration for the global workspace model of conscious information
processing presented in (Baars, 1988). Nowadays, the blackboard
architecture is a standard piece of AI technology, and with the recent design
of AI software agents based on Baars’ global workspace theory, the
influence of the blackboard architecture has come full circle (Franklin &
Graesser, 1999; 2001).

The global workspace architecture is advantageous from a purely
computer science perspective, but it’s noteworthy that these advantages gel
with empirical considerations. First, it is easily deployed on parallel
hardware, which is an obvious requirement for a neurologically plausible
cognitive architecture. Second, it ensures that the overall system degrades
gracefully when individual processes break down, which is compatible with
the brain’s robustness. Third, it facilitates the addition of new processes
without modification to the existing system, which renders it consistent with
evolutionary constraints. Fourth, it accommodates heterogeneous forms of
information processing and integrates their results.

The final point is critical here, since it is precisely the ability to manage
a high bandwidth of information generated by a large number of distinctive,
special-purpose parallel processes that enables a global workspace
architecture to realise an informationally unencapsulated cognitive process
without falling foul of complexity problems. Notably, the concurrent
activation of multiple disparate brain processes is also the signature of
conscious information processing according to the global workspace
hypothesis. In other words, consciousness goes hand-in-hand with a solution
to the frame problem in the biological brain.

6. Analogical Reasoning
Fodor says little about the computational model behind his claim that
informationally unencapsulated cognitive processes are computational
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infeasible. Yet there are strong hints of a commitment to a centralised, serial
process that somehow has all the requisite information at its disposal, and
that has the responsibility of choosing what information to access and when
to access it. Although parallel peripheral processes are part of the picture,
they are passive sources of information that wait to be called upon before
delivering their goods (Figure 2).22 This centralised, serial model of
computation is evoked by Dennett’s caricature robot, by the idea of
“Hamlet’s problem”, and by such phrases as “the totality of one’s epistemic
commitments is vastly too large a space to have to search” (Fodor) and
“access to the full set of an agent’s background beliefs gives rise to an
unmanageable combinatorial explosion” (Carruthers).

Figure 2: A Naïve Model of Information Flow

Figure 3: The Global Workspace Model of Information Flow

                                                
22 Fodor’s peripheral processes perform both input and output. The emphasis of the present
discussion is on perception.
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By contrast, global workspace theory posits multiple, parallel processes
that all contribute actively  to cognition (Figure 3). Consider the
computational processes that might underlie the likening of a Rorschach
inkblot to, say, an elephant. Fodor’s argument hints at a centralised process
that poses a series of questions one-at-a-time – is it a face? is it a butterfly?
is it a vulva? and so on – until it finally arrives at the idea of an elephant.
Instead, the global workspace model posits a specialist, parallel process that
is always on the lookout for elephantine shapes.23 This process is aroused
by the presence of an inkblot that actually resembles an elephant, and it
responds by announcing its findings. The urgency with which this process
commends itself means that the information it has to offer makes its way
into the global workspace, and is thereby broadcast back to all the other
specialist processes.24

The Rorschach inkblot example is especially pertinent, since it is closely
related to analogical reasoning. As Fodor emphasises, reasoning by analogy
is the epitome of an informationally unencapsulated cognitive process
because it “depends precisely upon the transfer of information among
cognitive domains previously assumed to be irrelevant” (Fodor, 1983,
p.!105). Moreover, analogical reasoning is arguably central to human
cognitive prowess (Gentner, 2003). So we should be able to offer a prima
facie case that the global workspace architecture relieves the computational
burden allegedly brought on by the informational unencapsulation of
analogical reasoning. The Rorschach blot example is a start.25 But a more
convincing case can be made in the context of a more fully realised theory

                                                
23 This might seem to be taking specialisation too far. But with 100 billion neurons and many
trillions of synapses, the human brain has plenty of scope for truly massive parallelism, and without
resort to “grandmother cell” coding.
24 The use of words like “aroused”, “announced”, and “urgency” here is purely stylistic, and doesn’t
mask the lack of an implementable concept. Competitive access to a global workspace can be realised
in a working computational model in various ways. For example, each parallel process can be made
responsible for assigning a value to its own relevance in a given situation, and a central winner-takes-
all strategy can be used to select the process to be granted access. For working implementations of the
global workspace model see (Franklin & Graesser, 1999; 2001).
25 The Rorschach blot is an example of literal similarity rather than true analogy.
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of analogical thinking. So what follows is a short review of recent research
on the computational aspects of analogical reasoning.26

6.1. Computational Models of Analogical Reasoning

Most recent computer models of analogical reasoning take their cue from
the structure mapping theory of analogy (Gentner, 1983). According to
Gentner’s theory, a central task in analogical reasoning is to find
“maximally structurally consistent” mappings between two representations
– a target located in working memory and a base located in long-term
memory.27 A structurally consistent mapping is one that conforms to certain
constraints. In particular, no element in the target/base can be mapped on to
more than one element in the base/target, and if two elements are put in
correspondence then their sub-elements must also be put in correspondence.
Finally, the theory includes a heuristic of systematicity, whereby deep and
rich mappings are preferred to shallow and sparse ones.28

The Structure Mapping Engine (SME) is a computational realisation of
Gentner’s structure mapping theory (Falkenheimer, et al., 1989). Its core is
an algorithm for finding mappings between a pair of propositional
representations that conform to the principles of the theory. It can find a
mapping between two given representations in polynomial time, and it
assimilates new information incrementally. ACME (Analogical Constraint
Mapping Engine) is another computer implementation of the mapping
process that adheres to the chief tenets of Gentner’s structure mapping
theory (Holyoak & Thagard, 1989). But unlike SME, which uses graph
matching, ACME views the mapping process as a constraint satisfaction
problem and employs connectionist techniques to solve it.

                                                
26 A related topic in AI is case-based reasoning  (Kolodner, 1993). However, case-based reasoning
tends to operate within domain boundaries, while the nub of the present discussion is the ability to
cross domain boundaries.
27 The ensuing discussion takes place against the backdrop of a language-like, viewpoint-free
representational medium (even when realised in a distributed connectionist network). But global
workspace theory is equally applicable to an analogical, viewer-centred representational medium, as
recommended in (Shanahan, 2004).
28 The “systematicity” of an analogical mapping in Gentner’s terminology has no direct connection
with the “systematicity” of thought (Fodor & Pylyshyn, 1988).
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Both the SME and ACME models find mappings between two given
representations, and neither addresses the question of retrieval (or access),
that is to say how to find candidate base representations from a large pool of
possibilities. Retrieval is the aspect of analogical reasoning responsible for
seeding “the transfer of information among cognitive domains previously
assumed to be irrelevant”. So the retrieval process is inherently
informationally unencapsulated, and is therefore the locus of the frame
problem for analogical reasoning. To quote Thagard, et al. (1990), “the
problem of analogical retrieval is how to get what you want from memory
without getting more than you can use”.29

The retrieval problem has been tackled in the context of ACME by a
computational model called ARCS (Thagard, et al., 1990), and in the
context of SME by a computational model called MAC/FAC (Forbus, et al.,
1994). The ARCS model (Analogical Retrieval by Constraint Satisfaction)
employs the same combination of constraint satisfaction and connectionism
as the ACME system from which it is descended. The ARCS retrieval
process is executed in two stages. The first stage finds candidate base
representations using pre-coded notions of semantic similarity, while the
second stage evaluates how well these candidates satisfy a number of
generic constraints on analogical mapping related to those advocated by
Gentner’s theory. The MAC/FAC model is a similar two-stage retrieval
process. In the MAC stage (Many Are Called), a crude but computationally
cheap filter is used to isolate a manageably small number of potential base
representations for mapping onto a given target. In the ensuing FAC stage
(Few Are Chosen), SME is used to select the best among the candidate
mappings recommended by the MAC stage.

Both the SME-MAC/FAC model and the ACME-ARCS model can
account for a good deal of well established psychological data about
analogical reasoning, as enumerated in the key papers already cited.
However, they also have limitations. Of especial interest here, as we’ll see
later, are certain criticisms levelled at these models by Keane, et al. (1994)

                                                
29 Thagard, et al. (1999), p. 261. As they go on to say, “this is the core problem of memory retrieval
in general”. It’s also a good redescription of what, following Fodor, this article means by the frame
problem itself.
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and Hummel & Holyoak (1997). Both sets of authors draw attention to the
unrealistic demands these models place on working memory capacity. Here
is a summary from (Hummel & Holyoak, 1997).

Both ACME and SME form explicit representations of very large
numbers of possible local matches between elements of source and
target analogs, most of which are then discarded as mapping proceeds.
Such processes do not seem compatible with the generally accepted
limits of working memory.

This, alongside other concerns, motivated the development of IAM
(Keane, et al., 1994) and LISA (Hummel & Holyoak, 1997). Both IAM
(Incremental Analogy Machine) and LISA (Learning and Inference with
Schemas and Analogies) carry out mapping serially and incrementally,
processing small propositional structures one at a time. For this reason, they
are able to emulate human analogical reasoning performance more closely
than their predecessors, duplicating the difficulties humans have in forming
“unnatural analogues” and human sensitivity to the order in which the parts
of the target and base representations are processed.

The IAM model tackles mapping only. However, the LISA model
tackles retrieval and mapping together, reflecting another of Hummel and
Holyoak’s desiderata, namely the need for a graceful integration of these
two aspects of analogical reasoning. The result is a system in which
retrieval is naturally cast as a parallel process while mapping is inherently
serial. For this reason, the LISA model – which is arguably the most
accurate and psychologically plausible of the current computational models
of analogical reasoning30 – is also the one that maps most cleanly and
elegantly onto a global workspace architecture.

6.2. The Interplay of Parallel and Serial Computation

The thrust of the ongoing argument is that the global workspace architecture
eases the computational burden on an informationally unencapsulated
process through its inherent parallelism. Accordingly, this section asks
whether it is possible to map a computational model of analogical reasoning
                                                
30 See (Keane & Eysenck, 2000, p. 436), for example.
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to the global workspace architecture in order to realise the potential for
parallel execution. The main focus of attention is the retrieval process. As
their respective authors emphasise, the ARCS, MAC/FAC, and LISA
models of retrieval are each amenable to parallel implementation. But in the
context of the LISA model, we shall also look at the interplay of parallel
and serial computation.

We begin with ARCS. Following Thagard, et al. (1990), the time
complexity analysis for a single run of ARCS must consider two
components – the time required to form a network of mapping constraints
across two potential representations and the time taken for the
corresponding network to settle.31 The former is purportedly O(n2m4) for a
serial machine, where n  is the total number of candidate base
representations and m is the number of propositions in the largest base or
target representation. This is not a favourable statistic, but it is the worst-
case analysis and the authors’ experimental data is more encouraging.
Moreover, it seems likely that a parallel implementation would reduce the
worst-case statistic to better proportions, although this possibility is not
discussed in (Thagard, et al., 1990).

The explicitly claimed advantage of parallelism for ARCS hinges on the
second component of the complexity analysis, namely the time required for
the network to settle (to find a solution). The authors do not offer a worst-
case analysis of this statistic, but they appeal to empirical results to justify
the claim that parallel implementation would reduce it from O(n) to constant
time. Although parallelism is clearly helpful for this component of the
computation, the dominant term in the overall analysis is still n2m4, and this
is worrisome if n is very large. This remains true in spite of the authors’
empirical evidence, which was gathered with a comparatively small set of
potential base representations. Therefore, since a very large n is precisely
what the frame problem is all about, there is only modest support for the
ongoing argument from the ARCS direction.

So let’s move on to the MAC/FAC model. Both the MAC and FAC
stages employ a set of parallel matchers that compare the target to each
                                                
31 Thagard, et al . (1990), p. 282. The authors also offer a space complexity analysis, which isn’t
relevant here.
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potential base in long-term memory and a single selector that chooses
among the outputs of the matchers. Since the matchers are completely
independent, the time complexity of a maximally parallel implementation
reduces to that of finding a single match hypothesis between a given target
and base. According to Forbus, et al. (1994), this is O(m) in the worst case
on a parallel machine and should typically be better than O(log m), where m
is the number of propositions in the larger of the base or target
representation.32

This is a far more pleasing complexity result than was obtained for
ARCS. It suggests that analogical reasoning, if implemented on massively
parallel hardware, is computationally feasible, even for a very large pool of
potential base representations. Moreover, in global workspace terms, the
array of parallel matchers in MAC/FAC corresponds directly to specialist,
unconscious processes, the selector process corresponds to the attention
mechanism that gates access to the global workspace, and the working
memory in which the final mapping is carried out corresponds to the global
workspace itself.

The fact that analogical reasoning can be rendered computationally
feasible through implementation on a form of parallel hardware that is
compatible with global workspace theory is very encouraging. However,
other models of parallel computation would fit MAC/FAC just as well as
the global workspace architecture. The aim here is to demonstrate a more
intimate link between the demands of informationally unencapsulated
cognitive processes in general and specific features of the global workspace
architecture. In this respect, the LISA model turns out to be more pertinent
than MAC/FAC.

Although they don’t offer a formal complexity analysis, Hummel and
Holyoak (1997) state that: “During mapping, driver propositions are
activated serially … At the same time, recipient propositions respond in
parallel to the semantic patterns generated by the role-filler bindings of an
active driver proposition.” (In Hummel and Holyoak’s terminology, “driver
propositions” belong to the representation resident in working memory,

                                                
32 Forbus, et al. (1994), p. 160.
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while “recipient propositions” belong to representations held in long-term
memory.) So LISA effectively carries out retrieval in parallel and mapping
serially. Consequently, as with MAC/FAC, retrieval time will not grow with
the size of the pool of potential base representations, given sufficient
parallelism in the underlying hardware.

Additionally, the combination of parallel and serial processing makes
LISA more compatible with global workspace theory than any of its rivals.
The currently active proposition in LISA’s working memory corresponds to
the current contents of the global workspace. The parallel activation of
propositions in LISA’s long-term memory corresponds to the broadcast of
the contents of the global workspace. And the distributed propositions in
LISA’s long-term memory correspond to parallel, unconscious processes in
global workspace theory. But most importantly, the necessarily serial
presentation of propositions in LISA’s limited capacity working memory
matches the necessarily serial presentation of coherent material in the
limited capacity global workspace.33 It is surely no accident that the features
of the LISA model that make it more psychologically plausible than its
competitors are the very same features that also align it so closely with
global workspace theory.

7. Discussion
Let’s review the argument so far. We set out by undermining the in-
principle claim that informationally unencapsulated cognitive processes are
computationally infeasible. It turned out that the case put forward by Fodor
and others is too weak to sustain such a conclusion. The way the biological
brain handles such processes is thereby demoted from an out-and-out
mystery to a scientific challenge. The global workspace architecture, with
its blend of parallel and serial computation, was then proposed as an answer
to this challenge.

In place of the naïve, serial, exhaustive search that seems to be behind
the intuitions of those authors who see the frame problem a serious obstacle,
                                                
33 Also, the mechanism of temporal binding deployed in LISA is compatible with a thalamocortically
realised global workspace along the lines proposed by Engel, et al . (1999), as remarked in an earlier
footnote.
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the global workspace architecture supports the idea of a single, serial thread
of computation that can also draw on the resources of a massively parallel
set of distributed processes. A review of current computational models of
analogical reasoning – often taken to be the epitome of informational
encapsulation – demonstrated a close fit between global workspace theory
and the most psychologically plausible of these models, namely that of
Hummel and Holyoak (1997).

The compatibility between Hummel and Holyoak’s model of analogical
reasoning and the global workspace architecture lends mutual support to
both theories. Of particular interest is the prospect of accounting for the fact
that, while some aspects of analogical reasoning are undoubtedly carried out
unconsciously, others plainly are not. Observing the 20th Century taboo on
discussions of consciousness, most analogical reasoning researchers have
chosen to ignore this issue. Contemporary accounts of analogical reasoning
tend to speak in neutral terms of a target representation in “working
memory” being mapped to some base representations retrieved from long-
term memory.34 But working memory is conventionally characterised as a
temporary repository of rehearsible material (Baddeley, 1986). Since there
is surely no such thing as unconscious rehearsal, this concept of working
memory is irrevocably tied to that of consciousness (Baars & Franklin,
2003), and by implication so is analogical reasoning.35

Thankfully, there is no longer any need to shy away from this fact.
Global workspace theory can offer an intellectually respectable account of
the conscious aspects of analogical reasoning. Moreover, global workspace
theory rests on the hypothesis that conscious information processing is
cognitively efficacious because it integrates the functionality of numerous
separate and independent brain processes. This suggests a deep explanation
of the psychological plausibility of models of analogical reasoning that
combine serial and parallel computation. Such models fit human behaviour
because the human brain is built to take advantage of the cognitive efficacy
                                                
34 See Waltz, et al . (2000) for a detailed psychological account of the role of working memory in
analogical reasoning.
35 As acknowledged by Courtney, et al . (1999), “by definition, working memory includes those
processes that enable us to hold in our ‘mind's eye’ the contents of our conscious awareness”.
Hummel and Holyoak (1997) also refer to working memory as “the current contents of ‘awareness’”.
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of conscious information processing realised through a global workspace
architecture with a distinctive serial/parallel mix.

The discussion has for some time concentrated on analogical reasoning,
which is of course only one among many informationally unencapsulated
cognitive processes. However, another advantage of bringing a
computational model of a specific cognitive process within the wider
compass of global workspace theory is that it embeds that model in a
generic account of cognitive function. Instead of seeing analogical
reasoning as an isolated process, it comes to be seen as interleaved with
many other cognitive activities – such as perception, action selection,
planning, belief revision, language production, language comprehension,
and so on – each of which can exploit the brain’s diversity of massively
parallel specialist processes.36

This brings us to our final topic of discussion, namely the implications
of the present proposal for the so-called modular theories of the human
mind that many contemporary cognitive scientists subscribe to in one form
or another (Fodor, 1983; Tooby & Cosmides, 1992; Karmiloff-Smith, 1992;
Sperber, 1994; Mithen, 1996; Pinker, 1997; Fodor, 2000; Carruthers, 2002).
Although modular theories come in various guises, nearly all share two
central tenets. First, that some proportion of human mental structure
comprises a set of special-purpose modules with a narrow remit. Second,
that the flexibility and creativity of human thought demands an additional
mechanism capable of transcending rigid modular boundaries.

The second of these tenets is the flash-point for the present debate, and
authors differ widely in the mechanisms they propose. Fodor (1983; 2000)
assigns cross-modular capabilities to the mind’s “central processes”, which
he believes to be beyond the reach of present-day cognitive science, laying
much of the blame for this on the frame problem. Karmiloff-Smith (1992),
writing from a developmental perspective, hypothesises a stage of
“representational redescription” whereby knowledge that was previously
represented implicitly for a child becomes explicitly represented to the
child. Sperber (1994) posits a “metarepresentation module”, which can

                                                
36 Forbus (2001) makes a similar recommendation.
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manipulate representations about representations and concepts of concepts,
allowing knowledge from multiple domains to be blended. Mithen (1996),
drawing on archaeological evidence, introduces the idea of human
“cognitive fluidity”, which permits “thoughts and knowledge generated by
specialized intelligences [to] flow freely around the mind”.37 Carruthers
(2003) suggests that “natural language is the medium for non-domain-
specific thinking, serving to integrate the outputs of a variety of domain-
specific conceptual faculties”.38

Global workspace theory, with its commitment to multiple, parallel,
specialist processes, is consistent with a modular view of the human mind.
What the global workspace architecture has to offer in addition is a model
of information flow that explains how an informationally unencapsulated
process can draw on just the information that is relevant to the ongoing
situation without being swamped by irrelevant rubbish. This is achieved by
distributing the responsibility for deciding relevance to the parallel
specialists themselves. The resulting massive parallelism confers great
computational advantage without compromising the serial flow of conscious
thought, which corresponds to the sequential contents of the limited
capacity global workspace.

In the context of a global workspace architecture, there are no
distinguished central processes with special privileges or powers. Rather,
every high-level cognitive process can be analysed in terms of the
interleaved operation of multiple, specialist, parallel processes, all of which
enjoy equal access to the global workspace. Analogical reasoning, for
example, can recruit the sort of capacity to integrate spatial relations
allegedly located in prefrontal cortex (Waltz, et al., 1999), alongside
whatever other brain resources it may require. The significance of
informational encapsulation is thereby much diminished, and the spectre of
the frame problem is dissolved.

                                                
37 Mithen (1996), p. 71.
38 Carruthers (2003), p. 657.
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