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Summary

When humans are engaged in goal-related process-

ing, activity in prefrontal cortex is increased [1, 2].
However, it has remained unclear whether this pre-

frontal activity encodes a subject’s current intention
[3]. Instead, increased levels of activity could reflect

preparation of motor responses [4, 5], holding in mind
a set of potential choices [6], tracking the memory of

previous responses [7], or general processes related
to establishing a new task set. Here we study subjects

who freely decided which of two tasks to perform and
covertly held onto an intention during a variable delay.

Only after this delay did they perform the chosen task
and indicate which task they had prepared. We demon-

strate that during the delay, it is possible to decode
from activity in medial and lateral regions of prefrontal

cortex which of two tasks the subjects were covertly
intending to perform. This suggests that covert goals

can be represented by distributed patterns of activity
in the prefrontal cortex, thereby providing a potential

neural substrate for prospective memory [8–10].

*Correspondence: haynes@cbs.mpg.de
During task execution, most information could be de-

coded from a more posterior region of prefrontal cor-
tex, suggesting that different brain regions encode

goals during task preparation and task execution. De-
coding of intentions was most robust from the medial

prefrontal cortex, which is consistent with a specific
role of this region when subjects reflect on their own

mental states.

Results

We directly addressed whether the current intentions of
a subject were encoded in specific regions of prefrontal
cortex. This was achieved by assessing whether multi-
variate pattern recognition [11] could be used to decode
that subject’s covert intention from activity patterns in
prefrontal cortex. If a cortical region indeed represents
a current intention, it must have some way of encoding
a set of different potential goals. One possibility is that
it uses a spatial code, with different, spatially segre-
gated neural subpopulations encoding different inten-
tions. Unfortunately, because of the limited spatial reso-
lution of human neuroimaging, most researchers have
restricted their analyses to activity averaged across ex-
tended regions of cortex. This leaves unclear whether
there are any regions encoding intentions in a spatially
distributed fashion. However, it has recently emerged
that functional magnetic resonance imaging can be used
to study fine-grained neural representations, even when
they are encoded at a finer scale than the resolution of
the measurement grid [12, 13]. This technique is power-
ful enough to reveal distributed representations of visual
images in occipital and temporal brain areas [11–14].

In order to investigate whether a subject’s current in-
tentions are reflected in such distributed response pat-
terns in prefrontal cortex, we required subjects to freely
select what task they wished to perform. Specifically,
they chose either adding or subtracting two numbers
(Figure 1). After the subject had freely decided upon
one of the two tasks, there was a variable delay of be-
tween 2.7 and 10.8 s, after which the task-relevant mate-
rial (two numbers) was presented. The variable delay
rendered the onset of the task-relevant material unpre-
dictable and thus required the subject to maintain
a high state of preparation even across long intervals
[10]. Shortly after the two numbers, a response screen
was presented that contained four numbers: one was
the correct answer for addition, one was the correct an-
swer for subtraction, and the two other numbers were
similar but incorrect numbers. Subjects only rarely
chose one of the two incorrect numbers (average 5%),
indicating that they were correctly performing the task
and not responding randomly. From the choice of one
of the two correct answers, it was possible to infer which
task the subject had chosen for the current trial. How-
ever, it is important to note that there was no way of tell-
ing which task the subject had freely selected prior to
the response, because there was no explicit instruction
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Figure 1. Delayed Intention Task

At the beginning of each trial, the word ‘‘se-

lect’’ was presented that instructed the sub-

jects to freely and covertly choose one of

two possible tasks, addition or subtraction.

After a delay during which subjects covertly

maintained their intention, two numbers

were presented and subjects were then re-

quired to perform the selected task (addition

or subtraction) on the two numbers. A re-

sponse screen then appeared showing two

correct answers (for either addition or sub-

traction) and two incorrect answers. Subjects

pressed a button to indicate which answer

was correct for the task they had performed.

From the button press, it was possible to de-

termine the covert intention of the subject

during the previous delay period.
and no behavioral response prior to the onset of the re-
sponse screen, and subjects responded randomly (see
Figure S1 in the Supplemental Data available online).
Also, because the arrangement of numbers on the re-
sponse screen was random, there was no possibility
for the subject to prepare their motor response. This en-
sured that any information we could decode from brain
activity during the delay was not related to covert prep-
aration of motor responses [4, 5].

We recorded brain responses with functional mag-
netic resonance imaging at 3 Tesla while subjects were
performing the free-selection task. In order to investi-
gate which cortical regions encode the subject’s current
intention, we next assessed whether it was possible to
decode from the spatial pattern of signals in each local
region of the brain which intention the subject was
covertly maintaining [11–14]. For this, we applied multi-
variate pattern recognition to spatial patterns of brain
responses under the two possible intentions (see Exper-
imental Procedures and Figure 2 for details on this anal-
ysis). We found that indeed several regions predicted
whether the subject was currently covertly intending to
perform the addition or subtraction task (Figure 2). The
highest decoding accuracy of 71% was achieved in me-
dial prefrontal cortex (T[7] = 4.62, p = 0.001, see Figure 2,
‘‘MPFCa’’). Importantly, however, decoding in this re-
gion was not possible during task execution, suggesting
that the intention was encoded in this brain region only
during the delay and not during task execution. In con-
trast, a region more superior and posterior along the me-
dial wall was not informative during the delay, but only
during the execution of the freely chosen task (Figure 2,
‘‘MPFCp’’). Besides medial prefrontal cortex, there were
also several regions of lateral prefrontal cortex where
decoding accuracy was lower, but still above chance
level (Figure 2). Also in these regions, decoding was at
chance level during task execution. Interestingly, only
a region of anterior-medial prefrontal cortex showed
an overall increase of activity during the delay period
while subjects had covertly formed a decision but
were still waiting to execute the task (Figure S2). As in
previous studies [10, 15], the duration of increased neu-
ral activity corresponded to the delay in the current task,
with longer delays leading to longer fMRI responses.
However, this region with an overall signal increase
was more anterior to the region that encoded the sub-
ject’s intentions. Importantly, there was no difference
between the two intentions in the overall level of activity
(T[7] = 20.46; p = 0.67) in medial prefrontal cortex, sug-
gesting that the intentions were not encoded in different
global levels of activity but in the detailed spatial pat-
terns of cortical responses.

Discussion

To summarize, we have demonstrated that regions of
both medial and lateral prefrontal cortex contain localiz-
able task-specific representations of freely chosen in-
tentions. In accordance with our findings, activity in sev-
eral regions of human prefrontal cortex (including the
frontopolar, lateral, medial, and prefrontal cortex) is in-
creased during diverse executive processes such as at-
tending to and thinking about intentions [16, 17], task-
switching [18–20], set-shifting [21], multitasking [22],
storing goals over a delay period [9, 10, 15, 23], branch-
ing and processing of subgoals [24, 25], and free task
selection [26]. However, these previous studies left un-
clear whether any region of prefrontal cortex actually en-
codes signals that are specific for the current task. In-
creased levels of activity during task preparation might
instead reflect unspecific preparatory signals, such as
maintaining a representation of the set of all potential
choices [6], tracking the memory of previous responses
[7], or general preparation. Our new findings resolve this
crucial question by showing for the first time that pre-
frontal cortex encodes information that is specific to
a task currently being prepared by a subject, as would
be required for regions encoding a subject’s intentions.
In accordance with our findings, single cells in monkey
lateral prefrontal cortex can prospectively encode ex-
pectations about task-relevant information [27]. Further-
more, ensembles of neurons in this region exhibit a grad-
ual increase in the information about simple saccadic
movement sequences while animals learn to perform
a sequence correctly [28]. Cells have also been reported
in the same area that code for specific moves while the
monkey is waiting to move a cursor so as to negotiate
a maze [29]. Here we show that in humans, a network
of brain regions, including not only lateral but also me-
dial prefrontal cortex, contains such task-specific repre-
sentations.

Although intention-related information was encoded
in both lateral and medial regions of prefrontal cortex,
decoding accuracy was highest in the medial region.



Reading Hidden Intentions
3

Please cite this article in press as: Haynes et al., Reading Hidden Intentions in the Human Brain, Current Biology (2007),
doi:10.1016/j.cub.2006.11.072
Figure 2. Brain Regions Encoding the Subjects’ Specific Intentions during Either Delay or Execution Periods

In order to search in an unbiased fashion for informative voxels, we used a ‘‘searchlight’’ approach [44], which examines the information in the

local spatial patterns surrounding each voxel vi.

Left: A spherical searchlight centered on one voxel (vi) was used to define a local neighborhood. For each scanning run, the spatial response

pattern in this local spherical cluster was extracted during preparation of either subtraction or addition. We then trained a pattern classifier

with a subset of the data to recognize the typical response patterns associated with covert preparation of the two mathematical operations

(see Experimental Procedures) and measured the local decoding accuracy. Then, the searchlight was shifted to the next spatial location.

Middle: Highlighted in green are medial brain regions (superimposed on a saggital slice of an anatomical template image) where this local clas-

sifier was able to decode significantly above chance which intention the subjects were covertly holding in an independent test data set. High-

lighted in red are regions where it was possible to decode the intention during the execution of the task.

Right: Decoding accuracy in searchlight locations with above-chance decoding during the delay period (MPFCa, anterior medial prefrontal cor-

tex [MNI 3,42,15]; MPFCp, posterior medial prefrontal cortex [MNI 11,32,38]; LLFPC, left lateral frontopolar cortex [MNI 236,54,12]; LIFS, left

inferior frontal sulcus [MNI 22,36,12]; RMFG, right middle frontal gyrus [MNI 48,24,45]; LFO, left frontal operculum [MNI 239,9,9]; error bars in-

dicate SEM). In the anterior medial prefrontal cortex (MPFCa), decoding during the delay (green bars) was highest but was at chance level during

the task execution (red bars) after onset of the task-relevant stimuli. In contrast, a more posterior and superior brain region on medial prefrontal

cortex (MPFCp) encoded the chosen task only once it had entered the stage of execution, but not during the delay period. Several other regions

of lateral prefrontal cortex also encoded information during the delay, but not during the execution period.
One possible explanation may be that the current study
allowed subjects to freely select which task to perform,
whereas in most previous studies the task goal was
specified by the experimenter. Medial prefrontal cortex
is especially involved in the initiation of willed move-
ments and their protection against interference [30]. In-
creased levels of medial activation are also found when
task sets have to be internally generated as opposed to
being fully externally cued [26, 31] and in similar cases of
underdetermination [32–34]. For example, a direct com-
parison between voluntary task selection and externally
cued tasks shows increased activation in medial, not lat-
eral, prefrontal regions [31] during the free selection of
tasks. Medial frontal cortex is also activated when sub-
jects reflect on their own mental states [35, 36]. Interest-
ingly, we also observed a division of labor between pos-
terior and anterior regions of medial prefrontal cortex,
where the anterior regions encode goals during prepara-
tion whereas the posterior regions encode goals during
task execution (Figure 2). This is consistent with sugges-
tions by previous authors that there is an anterior/poste-
rior gradient on the medial frontal surface [26]. Similarly,
the area at which activity is enhanced when subjects at-
tend to their intention to perform a simple finger move-
ment is more anterior than the area at which activity is
enhanced when they attend to the finger movement
itself [17, 34].

An interesting question for future research is the de-
gree to which the encoding in different prefrontal areas
reflects sustained maintenance of intentions across
multiple trials, or trial-by-trial switching of intentions.
Because of the random trial-by-trial alternation of sub-
jects in our study, we measured predominantly shift-tri-
als (see Figure S1), and therefore we are unable to ad-
dress the differences between sustained and transient
encoding. Previous studies have reported evidence for
both sustained [20] and shift-related [37] activity in me-
dial prefrontal cortex, so it would be interesting to apply
similar decoding-based techniques to cued paradigms
where the number of switch and stay trials can be better
balanced.

An important feature of our paradigm is that it ensured
that subjects could not covertly prepare for a specific
movement prior to the onset of the response-mapping
screen. This is in contrast to previous studies on pro-
spective coding that used event-related potentials.
These studies have shown that it is possible to decode
on a single trial whether subjects are going to choose
to move the left or right fingers [5] and that this informa-
tion is present even prior to the time at which the sub-
jects believe themselves to be making a decision [4].
However, these signals are recorded over motor-related
brain regions and thus are likely to reflect the covert
preparation of specific motor programs immediately
preceding the execution of a movement [4, 5]. In our
study, we can rule out the possibility that decoding dur-
ing the delay was based on motor preparation. Please
note that because the task-relevant stimuli and the re-
sponse screen occurred in tight temporal sequence,
we are unable to separate motor preparation from en-
coding of intentions during the execution period. An in-
teresting question is whether one could decode which
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task our subjects were going to choose before they were
aware of choosing it. Unfortunately, because of the rapid
pacing of individual trials, we were not able to reliably
analyze the period prior to the cued time of selection.
However, an important implication of our study is that
in future it might be possible to use decoding to reveal
which specific brain areas unconsciously determine
the intention that a subject is about to choose [38].

Importantly, we found that overall delay-related activ-
ity in prefrontal cortex was indistinguishable under both
conditions. There was no evidence, therefore, that pre-
paring to perform one task was more difficult than pre-
paring to perform the other. Furthermore, this finding
means that the two intentions are encoded, not by
some increase in global activity, but by different spatial
response patterns. This raises the intriguing question of
the precise neural basis of these cortical patterns en-
coding different intentions, given that there is a strong
overlap between cortical responses to different tasks
[39]. One possible explanation may be that cells in spe-
cific regions of prefrontal cortex have a functional spe-
cialization for either of the two tasks, and that there is
a fine-grained clustering of cells with similar properties
that is smaller than the size of conventional areas. For
example, in visual cortex, information encoded in similar
fine-grained patterns of visual cortex can be read out by
pattern recognition [12, 13]. This is typically explained as
a ‘‘biased sampling’’ or ‘‘aliasing’’ of fine-grained feature
columns by the individual fMRI voxels [11–13] and is
confirmed by simulations based on realistic neural to-
pographies (see Supplemental Data in [12]). This raises
the question whether the informative spatial patterns
we found might point to the existence of a similar colum-
nar architecture in prefrontal cortex, where cells might
be clustered according to similar roles in selective cog-
nitive control. Such a columnar architecture has been
highly debated as a general principle of cortical organi-
zation [40, 41] and has been claimed for the prefrontal
cortex [42]. Alternatively, our sampling patterns might
reflect the sampling of a distributed population code
for different tasks as has been proposed from the find-
ings of similar studies on object recognition [14]. Future
optical imaging studies will be able to extend our find-
ings by studying the local spatial topography of execu-
tive signals in prefrontal cortex. An important question
for future studies will be whether the medial prefrontal
cortex is generally involved in encoding specific tasks
during intentional choices or whether encoding in this
region is specific for tasks such as the preparation of
addition and subtraction.

Taken together, our results extend previous studies
on the processing of goals in prefrontal cortex in several
important ways. They reveal for the first time that spatial
response patterns in medial and lateral prefrontal cortex
encode a subject’s covert intentions in a highly specific
fashion. They also demonstrate a functional separation
in medial prefrontal cortex, where more anterior regions
encode the intention prior to its execution and more
posterior regions encode the intention during task exe-
cution. These findings have important implications not
only for the neural models of executive control, but
also for technical and clinical applications, such as the
further development of brain-computer interfaces, that
might now be able to decode intentions that go beyond
simple movements and extend to high-level cognitive
processes.

Experimental Procedures

Participants and Experimental Design

Three male and five female subjects (age between 21 and 35) gave

written informed consent to participate in the experiment, which

was approved by the ethics committee at the Institute of Neurology,

University College London. All subjects were right-handed and had

normal or corrected to normal visual acuity.

At the beginning of each trial, a cue-word (‘‘select’’) was presented

at fixation that instructed the subjects to rapidly select one of the

two possible tasks (see Figure 1). This was followed by a variable de-

lay of between 2.7 and 10.8 s, during which the subject was in-

structed to prepare for the task. Because of the variable delay, the

onset time of the task-relevant stimuli was not predictable, requiring

the subjects to maintain a state of continuous preparation across the

extended delay [10, 15]. Then, the task-relevant stimuli were pre-

sented, which consisted of two 2-digit numbers presented above

and below the fixation spot. Subjects were instructed to either add

or subtract the two numbers in accordance with the task they had

previously covertly chosen. Then after 2 s, a ‘‘response-mapping’’

screen was presented that showed four numbers, one in each visual

quadrant on the screen. Two of these numbers were correct re-

sponses (one for addition and one for subtraction) and two were in-

correct responses. Subjects responded with one of four response

buttons operated by the left and right index and middle fingers.

The keys corresponded to the positions of the four numbers on

the ‘‘response mapping’’ screen. Please note that the decoding anal-

ysis (see below) was performed on signals related to brain activity

prior to onset of the screen with task stimuli and thus 2 s before

the response assignment, so decoding could not have been based

on covert motor preparation because the mapping of correct and

incorrect responses to keys was randomized from trial to trial. The

distribution of phase durations during the main experiment (i.e.,

sequences of N trials where subjects chose the same task) followed

an exponential distribution, as would be assumed if subjects chose

randomly on each trial which task to perform (Figure S1). Prior to the

experiment, subjects practised the task for 7 min. During each

scanning run, subjects performed 32 trials.

fMRI Acquisition

A Siemens Allegra 3T scanner with standard head coil was used to

acquire functional MRI volumes (42 slices, TR = 2730 ms, resolution

3 3 3 3 1.5 mm3). For each subject, 8 runs of functional MRI data

were acquired each with 155 images. To avoid susceptibility arte-

facts, slices were tilted 20� and the resolution in read-out direction

was increased to 1.5 mm. The first three images of each run were

discarded to allow for magnetic saturation effects.

Data Analysis

The fMRI data were motion corrected, spatially normalized to a stan-

dard stereotaxic space (Montreal Neurological Institute EPI tem-

plate), and resampled to an isotropic spatial resolution of 3 3 3 3

3 mm3 in SPM2 (http://www.fil.ion.ucl.ac.uk/spm). The first analysis

was designed to identify brain regions where activity was signifi-

cantly increased during the delay period while subjects were prepar-

ing for the task (Figure S2). This analysis was performed with a gen-

eral linear model as implemented in SPM2. The model consisted of

four boxcar regressors, each convolved with a canonical haemody-

namic response function. Each regressor modelled either the delay

or execution period of one of the two task types. Prior to the GLM

analysis, the data were smoothed with a Gaussian kernel of 6 mm

FWHM to account for the anatomical variability across subjects

and to satisfy the assumptions of Gaussian random field theory [43].

Pattern Classification

The second analysis was designed to identify regions where spa-

tially distributed fMRI activation patterns carried information about

the task the subject was preparing for. First, we estimated a modified

general linear model as above but now based on unsmoothed data.

This change was made to maximize sensitivity and allow extraction

of the full information present in the spatial patterns of prefrontal

http://www.fil.ion.ucl.ac.uk/spm
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cortex, which would have been reduced by the smoothing. Then, in

order to search in an unbiased fashion for informative voxels, we

used a novel variant of the ‘‘searchlight’’ approach [44], which exam-

ines the information in the local spatial patterns surrounding each

voxel vi (see Figure 2, left). Thus, for each vi, we investigated whether

its local environment contained spatial information that would allow

decoding of the current intention.

For a given voxel vi, we first defined a small spherical cluster of N

voxels c1.N with radius of three voxels centered on vi. For each

voxel c1.N in the fixed local cluster, we extracted the unsmoothed

parameter estimates for delay-period activity separately for covert

preparation of the addition and the selection task. This yielded two

N-dimensional pattern vectors xr,1.N and yr,1..N for each run r, repre-

senting the spatial response patterns in the local cluster during co-

vert preparation for addition and subtraction. Next, we used multi-

variate pattern recognition to assess how much intention-related

information was encoded in the local pattern. To achieve this, we

assigned the pattern vectors xr,1.N and yr,1..N for seven of the eight

imaging runs to a ‘‘training’’ data set that was used to train a linear

support vector pattern classifier [45] (with fixed regularisation pa-

rameter C = 1) to correctly identify response patterns related to

the two different intentions the subject was currently holding. The

classification was performed with the LIBSVM implementation

(http://www.csie.ntu.edu.tw/wcjlin/libsvm).

The amount of intention-related information present within this lo-

cal cluster could then be assessed by examining how well the inten-

tions during the remaining independent eighth or ‘‘test’’ data set

were classified. Good classification implies that the local cluster of

voxels spatially encodes information about the specific current in-

tention of the subject. In total, the training and test procedure was

repeated eight times, each with a different run assigned as test data

set, yielding an average decoding accuracy in the local environment

of the central voxel vi (8-fold crossvalidation). Then, the procedure

was repeated for the next spatial position at voxel vj. The average

decoding accuracy for each voxel was then used to create a

3-dimensional spatial map of decoding accuracy for each position

vi in prefrontal cortex. Because the subjects’ images had previously

been normalized to a common stereotactic template, it was possible

to extend previous local decoding approaches [44] and perform

a second-level analysis where we computed on a voxel-by-voxel

basis how well decoding could be performed on average across

all subjects from each position in the brain. This yielded a spatial

map of average decoding accuracy that is plotted in green in

Figure 2. We also performed a similar pattern classification with the

parameter estimates for task execution as opposed to the delay

period. This is plotted in Figure 2 in red.

Supplemental Data

Two Supplemental Figures can be found with this article online at

http://www.current-biology.com/cgi/content/full/17/4/---/DC1/.
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